產(chǎn)品編號 | 產(chǎn)品名稱 | 產(chǎn)品規(guī)格 | 產(chǎn)品等級 | 產(chǎn)品價格 |
Ubiquitinylation kit
泛素化試劑盒
◆用于合成泛素-E2硫酯的多功能工具
● 能合成一系列由硫酯連接的泛素綴合酶E2的理想方法
● 生物素化的泛素能對連接了鏈霉親和素的酶進(jìn)行靈敏檢測
● 試劑盒供50次50 μL的反應(yīng)使用
泛素化試劑盒是一套在泛素化實驗中用于合成泛素-E2硫酯的試劑。該試劑盒利用泛素級聯(lián)反應(yīng)中前兩個步驟來產(chǎn)生一系列由硫酯連接的泛素綴合酶(E2s);用于將泛素轉(zhuǎn)移至E3泛素連接酶;然后對靶蛋白進(jìn)行泛素化。生物素化的泛素能有助硫酯的形成,并能對泛素綴合物進(jìn)行高靈敏度檢測。
建議用法:合成用于泛素化實驗的泛素-E2硫酯;在專用的E3泛素連接酶的參與下對靶蛋白進(jìn)行泛素化;對用于與新型E2酶通過硫酯連接的泛素進(jìn)行活化;使用細(xì)胞裂解液或粗提物/制備劑為來源的E3泛素連接酶來促進(jìn)泛素化;不依賴底物(目標(biāo)蛋白)的體外泛素化反應(yīng)。
圖1. |
酯測試Western Blotting能夠適用于所有E2綴合酶。操作步驟按照“Assay Protocol”部分所述的進(jìn)行。 生物素化-泛素-酶共聚物通過蛋白質(zhì)印跡法的硫酯測試來檢測,其中分別包括: A: UbcH1 (Prod. No. BML-UW9020)、B: UbcH2 (Prod. No. BML-UW9025)、 C: UbcH3 (Prod. No. BML-UW8730)、D: UbcH5a (Prod. No. BML-UW9050)、 E: UbcH5b (Prod. No. BML-UW9060)、F: UbcH5c (Prod. No. BML-UW9070)、 G: UbcH6 (Prod. No. BML-UW8710)、H: UbcH7 (Prod. No. BML-UW9080)、 I: UbcH8 (Prod. No. BML-UW9135)、J: UbcH10 (Prod. No. BML-UW0960)、 K: Ubc13/MMS2 (Prod. No. BML-UW9565), 而使用“Analysis by Western Blotting”部分所述的鏈霉親和素-辣根過氧化物酶檢測系統(tǒng)的有M: 生物素化SDS分子量標(biāo)記 (Sigma, SDS-6B) 從下到上: 20.1, 29.0, 39.8, 58.1 kDa。 |
◆產(chǎn)品規(guī)格
應(yīng)用注釋 |
用法: 1. 在專用的E3泛素連接酶參與下對靶蛋白進(jìn)行泛素化。E2的家族能夠產(chǎn)生E2-Ub硫酯 綴合物以用于測試,以及與特定E3/靶蛋白的結(jié)合。 例如:p53在mdm2(E3)和UbcH5b(E2)10的參與下進(jìn)行泛素化。 2. 活化用于將硫酯與新型E2酶綴合的泛素。(在直接可比的條件下,可使用試劑盒中 的E2s作為替代) 3. 使用細(xì)胞裂解液或粗提物/制備液作為E3泛素連接酶的來源,在泛素化試劑盒組分的 參與下,促進(jìn)已純化的靶蛋白的泛素化。 4. 不依賴底物(目標(biāo)蛋白)的體外泛素化反應(yīng)。確定E3酶的泛素連接活性/特異性以及 它們的催化結(jié)構(gòu)域/片段11。 注:應(yīng)用1和2提供的方案可以通過包含、省略或替代特定的酶組分來修改,從而應(yīng)用 于其他實驗。 |
質(zhì)量 |
試劑盒包含了足夠進(jìn)行4次含有E2酶反應(yīng)的材料。 |
使用/穩(wěn)定性 |
試劑盒的所有組分應(yīng)在-80°C下儲存以確保穩(wěn)定性和活性。 |
儲存 |
避免反復(fù)凍融 |
運(yùn)輸 |
干冰運(yùn)輸 |
長期儲存 |
-80℃ |
組分 |
20×泛素活化酶溶液 |
產(chǎn)品編號 |
產(chǎn)品名稱 |
產(chǎn)品規(guī)格 |
BML-UW9920-0001 |
Ubiquitinylation kit |
1 kit |
◆相關(guān)產(chǎn)品
產(chǎn)品編號 |
產(chǎn)品名稱 |
產(chǎn)品規(guī)格 |
BML-UW8995-0001 |
UBI-QAPTURE-Q kit |
20 tests |
BML-UW9915-0001 |
Ubiquitin conjugating kit (HeLa lysate-based) |
20 tests |
BML-UW0970-0001 |
Auto-ubiquitinylation kit |
10 tests |
BML-UW0590-0001 |
NEDDylation Kit |
20 tests |
BML-UW0400A-0001 |
Ubiquitin activating kit |
96 wells |
參考文獻(xiàn)
◆ 產(chǎn)品相關(guān)文獻(xiàn)
1. |
BTK blocks the inhibitory effects of MDM2 on p53 activity: M. Rada, et al.; Oncotarget 8, 106639 (2017), Abstract; Full Text |
2. |
Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling: P.X. Wang, et al.; Nat. Commun. 7, 10592 (2016), Application(s): In vitro ubiquitination assays, Abstract; Full Text |
3. |
Host cell-catalyzed S-palmitoylation mediates Golgi targeting of the Legionella ubiquitin ligase GobX: Y.H. Lin, et al.; J. Biol. Chem. 290, 25766 (2015), Application(s): Western Blot, Abstract; Full Text |
4. |
TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING: Y. Wang, et al.; PLoS Pathog. 11, e1005012 (2015), Application(s): In vitro ubiquitination assay, Abstract; Full Text |
5. |
TRIM35 negatively regulates TLR7- and TLR9-mediated type I interferon production by targeting IRF7: Y. Wang, et al.; FEBS Lett. 589, 1322 (2015), Application(s): In vitro ubiquitination assay, Abstract; |
6. |
Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's disease: J. Romaní-Aumedes, et al.; Cell Death Dis. 5, e1364 (2014), Abstract; |
7. |
Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells: X. Chen, et al.; Cell Signal. 26, 1532 (2014), Abstract; |
8. |
Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2: S.S. Ong, et al.; Biochem. J. 459, 193 (2014), Abstract; |
9. |
Ubiquitin-proteasome-mediated degradation of S-RNase in a solanaceous cross-compatibility reaction: T. Entani, et al.; Plant J. 78, 1014 (2014), Abstract; |
10. |
E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation: X. Zhi, et al.; Cancer Res. 73, 385 (2013), Abstract; |
11. |
The E3 ubiquitin ligase MARCH8 negatively regulates IL-1β-induced NF-κB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation: R. Chen, et al.; Proc. Natl. Acad. Sci. U.S.A. 109, 14128 (2012), Abstract; Full Text |
12. |
TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination: J. Zhang, et al.; J. Biol. Chem. 287, 28646 (2012), Abstract; |
13. |
Cullin 4B protein ubiquitin ligase targets peroxiredoxin III for degradation: X. Li, et al.; J. Biol. Chem. 286, 32344 (2011), Abstract; Full Text |
14. |
Tripartite motif 8 (TRIM8) modulates TNFα- and IL-1β-triggered NF-κB activation by targeting TAK1 for K63-linked polyubiquitination: Q. Li, et al.; Proc. Natl. Acad. Sci. U.S.A. 108, 19341 (2011), Abstract; Full Text |
15. |
1-Benzyl-1,2,3,4-tetrahydroisoquinoline binds with tubulin beta, a substrate of parkin, and reduces its polyubiquitination: R. Kohta, et al.; J. Neurochem. 114, 1291 (2010), Abstract; |
16. |
Pasteurella multocida Toxin-induced Pim-1 expression disrupts suppressor of cytokine signalling (SOCS)-1 activity: D. Hildebrand, et al.; Cell. Microbiol. 12, 1732 (2010), Abstract; |
17. |
The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation: B. Zhong, et al.; J. Immunol. 184, 6249 (2010), Abstract; Full Text |
18. |
The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation: D. Zhao, et al.; Cancer Res. 70, 4728 (2010), Abstract; Full Text |
19. |
REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I: D. Gao, et al.; PLoS One 4, e5760 (2009), Abstract; Full Text |
◆一般參考文獻(xiàn)
1. |
Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo: M.K. Saville, et al.; J. Biol. Chem. 279, 42169 (42169), Abstract; |
2. |
Characterization of the novel E3 ubiquitin ligase encoded in exon 3 of herpes simplex virus-1-infected cell protein 0: R. Hagglund, et al.; PNAS 99, 7889 (2002), Abstract; |
3. |
Mechanisms underlying ubiquitination: C.M. Pickart, et al.; Annu. Rev. Biochem. 70, 503 (2001), Abstract; |
4. |
Functions of the MDM2 oncoprotein: D.A. Freedman; Cell Mol. Life. Sci. 55, 96 (1999), Abstract; |
5. |
Regulation of the p53 tumor suppressor protein: M. Oren, et al.; J. Biol. Chem. 274, 36031 (1999), Abstract; |
6. |
The p53 pathway: C. Prives, et al.; J. Pathol. 187, 112 (1999), Abstract; |
7. |
The ubiquitin-proteasome system and endocytosis: G.J. Strous, et al.; J. Cell. Sci. 112 , 1417 (1999), Abstract; |
8. |
The ubiquitin system: A. Hershko, et al.; Annu. Rev. Biochem. 67, 425 (1998), Abstract; |
9. |
Pathways of ubiquitin conjugation: A.L. Haas, et al.; FASEB J. 11, 1257 (1997), Abstract; |
10. |
P53 and mdm-2: interactions between tumor suppressor gene and oncogene products: M. Perry, et al.; Mt. Sinai J. Med. 61, 291 (1994), Abstract; |
11. |
The p53 tumor suppressor gene: A.J. Levine, et al.; J. Lab. Clin. Med. 123, 817 (1994), Abstract; |